Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.296
Filtrar
1.
Curr Biol ; 34(6): 1295-1308.e5, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452759

RESUMO

Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.


Assuntos
Cromátides , Lisina , Separase/metabolismo , Securina/genética , Securina/metabolismo , Cromátides/metabolismo , Acetilação , Lisina/genética , Lisina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Anáfase , Endopeptidases , Segregação de Cromossomos
2.
Mol Cell ; 84(6): 1139-1148.e5, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452765

RESUMO

Eukaryotic genomes are folded into DNA loops mediated by structural maintenance of chromosomes (SMC) complexes such as cohesin, condensin, and Smc5/6. This organization regulates different DNA-related processes along the cell cycle, such as transcription, recombination, segregation, and DNA repair. During the G2 stage, SMC-mediated DNA loops coexist with cohesin complexes involved in sister chromatid cohesion (SCC). However, the articulation between the establishment of SCC and the formation of SMC-mediated DNA loops along the chromatin remains unknown. Here, we show that SCC is indeed a barrier to cohesin-mediated DNA loop expansion along G2/M Saccharomyces cerevisiae chromosomes.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas de Saccharomyces cerevisiae , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , 60634 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Science ; 383(6687): 1122-1130, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452070

RESUMO

Eukaryotic genomes are organized by loop extrusion and sister chromatid cohesion, both mediated by the multimeric cohesin protein complex. Understanding how cohesin holds sister DNAs together, and how loss of cohesion causes age-related infertility in females, requires knowledge as to cohesin's stoichiometry in vivo. Using quantitative super-resolution imaging, we identified two discrete populations of chromatin-bound cohesin in postreplicative human cells. Whereas most complexes appear dimeric, cohesin that localized to sites of sister chromatid cohesion and associated with sororin was exclusively monomeric. The monomeric stoichiometry of sororin:cohesin complexes demonstrates that sister chromatid cohesion is conferred by individual cohesin rings, a key prediction of the proposal that cohesion arises from the co-entrapment of sister DNAs.


Assuntos
Proteínas de Ciclo Celular , Cromátides , 60634 , Troca de Cromátide Irmã , Humanos , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromatina/metabolismo , 60634/metabolismo , DNA/genética , DNA/metabolismo , Linhagem Celular Tumoral
4.
Science ; 384(6691): 119-124, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484038

RESUMO

Newly copied sister chromatids are tethered together by the cohesin complex, but how sister chromatid cohesion coordinates with DNA replication is poorly understood. Prevailing models suggest that cohesin complexes, bound to DNA before replication, remain behind the advancing replication fork to keep sister chromatids together. By visualizing single replication forks colliding with preloaded cohesin complexes, we find that the replisome instead pushes cohesin to where a converging replisome is met. Whereas the converging replisomes are removed during DNA replication termination, cohesin remains on nascent DNA and provides cohesion. Additionally, we show that CMG (CDC45-MCM2-7-GINS) helicase disassembly during replication termination is vital for proper cohesion in budding yeast. Together, our results support a model wherein sister chromatid cohesion is established during DNA replication termination.


Assuntos
Cromátides , 60634 , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Troca de Cromátide Irmã , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , 60634/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Sci Adv ; 10(10): eadk9001, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457500

RESUMO

Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.


Assuntos
Diploide , Meiose , Animais , Camundongos , Haploidia , Meiose/genética , Núcleo Celular/genética , Cromátides
6.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315097

RESUMO

DNA combing and DNA spreading are two central approaches for studying DNA replication fork dynamics genome-wide at single-molecule resolution by distributing labeled genomic DNA on coverslips or slides for immunodetection. Perturbations in DNA replication fork dynamics can differentially affect either leading or lagging strand synthesis, for example, in instances where replication is blocked by a lesion or obstacle on only one of the two strands. Thus, we sought to investigate whether the DNA combing and/or spreading approaches are suitable for resolving adjacent sister chromatids during DNA replication, thereby enabling the detection of DNA replication dynamics within individual nascent strands. To this end, we developed a thymidine labeling scheme that discriminates between these two possibilities. Our data suggests that DNA combing resolves sister chromatids, allowing the detection of strand-specific alterations, whereas DNA spreading typically does not. These findings have important implications when interpreting DNA replication dynamics from data obtained by these two commonly used techniques.


Assuntos
Cromátides , Replicação do DNA , DNA , Cromátides/genética , DNA/genética , Biologia Molecular/métodos , Dano ao DNA
7.
Cell Mol Life Sci ; 81(1): 100, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388697

RESUMO

Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , 60634 , Cromátides/genética , Cromátides/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias/genética , Segregação de Cromossomos , Aneuploidia , Instabilidade Genômica
8.
Nature ; 626(7999): 653-660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267580

RESUMO

Two newly duplicated copies of genomic DNA are held together by the ring-shaped cohesin complex to ensure faithful inheritance of the genome during cell division1-3. Cohesin mediates sister chromatid cohesion by topologically entrapping two sister DNAs during DNA replication4,5, but how cohesion is established at the replication fork is poorly understood. Here, we studied the interplay between cohesin and replication by reconstituting a functional replisome using purified proteins. Once DNA is encircled before replication, the cohesin ring accommodates replication in its entirety, from initiation to termination, leading to topological capture of newly synthesized DNA. This suggests that topological cohesin loading is a critical molecular prerequisite to cope with replication. Paradoxically, topological loading per se is highly rate limiting and hardly occurs under the replication-competent physiological salt concentration. This inconsistency is resolved by the replisome-associated cohesion establishment factors Chl1 helicase and Ctf4 (refs. 6,7), which promote cohesin loading specifically during continuing replication. Accordingly, we found that bubble DNA, which mimics the state of DNA unwinding, induces topological cohesin loading and this is further promoted by Chl1. Thus, we propose that cohesin converts the initial electrostatic DNA-binding mode to a topological embrace when it encounters unwound DNA structures driven by enzymatic activities including replication. Together, our results show how cohesin initially responds to replication, and provide a molecular model for the establishment of sister chromatid cohesion.


Assuntos
60634 , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromátides/metabolismo , 60634/metabolismo , DNA Fúngico/biossíntese , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática
9.
Nat Struct Mol Biol ; 31(1): 23-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872232

RESUMO

Cohesin forms a proteinaceous ring that is thought to link sister chromatids by entrapping DNA and counteracting the forces generated by the mitotic spindle. Whether individual cohesins encircle both sister DNAs and how cohesin opposes spindle-generated forces remains unknown. Here we perform force measurements on individual yeast cohesin complexes either bound to DNA or holding together two DNAs. By covalently closing the hinge and Smc3Psm3-kleisin interfaces we find that the mechanical stability of the cohesin ring entrapping DNA is determined by the hinge domain. Forces of ~20 pN disengage cohesin at the hinge and release DNA, indicating that ~40 cohesin molecules are sufficient to counteract known spindle forces. Our findings provide a mechanical framework for understanding how cohesin interacts with sister chromatids and opposes the spindle-generated tension during mitosis, with implications for other force-generating chromosomal processes including transcription and DNA replication.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitose , Cromátides/metabolismo
10.
Curr Biol ; 34(1): 117-131.e5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134935

RESUMO

Aneuploid human eggs (oocytes) are a major cause of infertility, miscarriage, and chromosomal disorders. Such aneuploidies increase greatly as women age, with defective linkages between sister chromatids (cohesion) in meiosis as a common cause. We found that loss of a specific pool of the cohesin protector protein, shugoshin 2 (SGO2), may contribute to this phenomenon. Our data indicate that SGO2 preserves sister chromatid cohesion in meiosis by protecting a "cohesin bridge" between sister chromatids. In human oocytes, SGO2 localizes to both sub-centromere cups and the pericentromeric bridge, which spans the sister chromatid junction. SGO2 normally colocalizes with cohesin; however, in meiosis II oocytes from older women, SGO2 is frequently lost from the pericentromeric bridge and sister chromatid cohesion is weakened. MPS1 and BUB1 kinase activities maintain SGO2 at sub-centromeres and the pericentromeric bridge. Removal of SGO2 throughout meiosis I by MPS1 inhibition reduces cohesion protection, increasing the incidence of single chromatids at meiosis II. Therefore, SGO2 deficiency in human oocytes can exacerbate the effects of maternal age by rendering residual cohesin at pericentromeres vulnerable to loss in anaphase I. Our data show that impaired SGO2 localization weakens cohesion integrity and may contribute to the increased incidence of aneuploidy observed in human oocytes with advanced maternal age.


Assuntos
Proteínas de Ciclo Celular , Oócitos , Humanos , Feminino , Idoso , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Oócitos/metabolismo , 60634 , Meiose , Centrômero/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos
11.
Nat Commun ; 14(1): 7947, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040722

RESUMO

The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.


Assuntos
Centrômero , DNA Satélite , Humanos , DNA Satélite/genética , Proteína Centromérica A/genética , Centrômero/metabolismo , Mitose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos
12.
Elife ; 122023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975572

RESUMO

Cohesin is a trimeric complex containing a pair of SMC proteins (Smc1 and Smc3) whose ATPase domains at the end of long coiled coils (CC) are interconnected by Scc1. During interphase, it organizes chromosomal DNA topology by extruding loops in a manner dependent on Scc1's association with two large hook-shaped proteins called SA (yeast: Scc3) and Nipbl (Scc2). The latter's replacement by Pds5 recruits Wapl, which induces release from chromatin via a process requiring dissociation of Scc1's N-terminal domain (NTD) from Smc3. If blocked by Esco (Eco)-mediated Smc3 acetylation, cohesin containing Pds5 merely maintains pre-existing loops, but a third fate occurs during DNA replication, when Pds5-containing cohesin associates with Sororin and forms structures that hold sister DNAs together. How Wapl induces and Sororin blocks release has hitherto remained mysterious. In the 20 years since their discovery, not a single testable hypothesis has been proposed as to their role. Here, AlphaFold 2 (AF) three-dimensional protein structure predictions lead us to propose formation of a quarternary complex between Wapl, SA, Pds5, and Scc1's NTD, in which the latter is juxtaposed with (and subsequently sequestered by) a highly conserved cleft within Wapl's C-terminal domain. AF also reveals how Scc1's dissociation from Smc3 arises from a distortion of Smc3's CC induced by engagement of SMC ATPase domains, how Esco acetyl transferases are recruited to Smc3 by Pds5, and how Sororin prevents release by binding to the Smc3/Scc1 interface. Our hypotheses explain the phenotypes of numerous existing mutations and are highly testable.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Saccharomyces cerevisiae/genética , DNA/metabolismo , Adenosina Trifosfatases/metabolismo , Cromátides/metabolismo
13.
EMBO Rep ; 24(11): e57227, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795949

RESUMO

Chromosome segregation errors in mammalian oocyte meiosis lead to developmentally compromised aneuploid embryos and become more common with advancing maternal age. Known contributors include age-related chromosome cohesion loss and spindle assembly checkpoint (SAC) fallibility in meiosis-I. But how effective the SAC is in meiosis-II and how this might contribute to age-related aneuploidy is unknown. Here, we developed genetic and pharmacological approaches to directly address the function of the SAC in meiosis-II. We show that the SAC is insensitive in meiosis-II oocytes and that as a result misaligned chromosomes are randomly segregated. Whilst SAC ineffectiveness in meiosis-II is not age-related, it becomes most prejudicial in oocytes from older females because chromosomes that prematurely separate by age-related cohesion loss become misaligned in meiosis-II. We show that in the absence of a robust SAC in meiosis-II these age-related misaligned chromatids are missegregated and lead to aneuploidy. Our data demonstrate that the SAC fails to prevent cell division in the presence of misaligned chromosomes in oocyte meiosis-II, which explains how age-related cohesion loss can give rise to aneuploid embryos.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Feminino , Animais , Fuso Acromático/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Meiose/genética , Oócitos , Cromátides , Aneuploidia , Segregação de Cromossomos , Mamíferos/genética
14.
Nat Struct Mol Biol ; 30(9): 1286-1294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592094

RESUMO

Sister chromatid cohesion, established during replication by the ring-shaped multiprotein complex cohesin, is essential for faithful chromosome segregation. Replisome-associated proteins are required to generate cohesion by two independent pathways. One mediates conversion of cohesins bound to unreplicated DNA ahead of replication forks into cohesive entities behind them, while the second promotes cohesin de novo loading onto newly replicated DNA. The latter process depends on the cohesin loader Scc2 (NIPBL in vertebrates) and the alternative PCNA loader CTF18-RFC. However, the mechanism of de novo cohesin loading during replication is unknown. Here we show that PCNA physically recruits the yeast cohesin loader Scc2 via its C-terminal PCNA-interacting protein motif. Binding to PCNA is crucial, as the scc2-pip mutant deficient in Scc2-PCNA interaction is defective in cohesion when combined with replisome mutants of the cohesin conversion pathway. Importantly, the role of NIPBL recruitment to PCNA for cohesion generation is conserved in vertebrate cells.


Assuntos
Cromátides , Segregação de Cromossomos , Animais , Antígeno Nuclear de Célula em Proliferação/genética , Cromátides/genética , Proteínas de Ciclo Celular/genética , Saccharomyces cerevisiae/genética
15.
Sci Adv ; 9(34): eadi2804, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624896

RESUMO

In asexual animals, female meiosis is modified to produce diploid oocytes. If meiosis still involves recombination, this is expected to lead to a rapid loss of heterozygosity, with adverse effects on fitness. Many asexuals, however, have a heterozygous genome, the underlying mechanisms being most often unknown. Cytological and population genomic analyses in the nematode Mesorhabditis belari revealed another case of recombining asexual being highly heterozygous genome-wide. We demonstrated that heterozygosity is maintained despite recombination because the recombinant chromatids of each chromosome pair cosegregate during the unique meiotic division. A theoretical model confirmed that this segregation bias is necessary to account for the observed pattern and likely to evolve under a wide range of conditions. Our study uncovers an unexpected type of non-Mendelian genetic inheritance involving cosegregation of recombinant chromatids.


Assuntos
Cromátides , Nematoides , Feminino , Animais , Cromátides/genética , Genômica , Diploide , Meiose/genética
16.
Mol Cell ; 83(17): 3049-3063.e6, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37591243

RESUMO

Cohesin connects CTCF-binding sites and other genomic loci in cis to form chromatin loops and replicated DNA molecules in trans to mediate sister chromatid cohesion. Whether cohesin uses distinct or related mechanisms to perform these functions is unknown. Here, we describe a cohesin hinge mutant that can extrude DNA into loops but is unable to mediate cohesion in human cells. Our results suggest that the latter defect arises during cohesion establishment. The observation that cohesin's cohesion and loop extrusion activities can be partially separated indicates that cohesin uses distinct mechanisms to perform these two functions. Unexpectedly, the same hinge mutant can also not be stopped by CTCF boundaries as well as wild-type cohesin. This suggests that cohesion establishment and cohesin's interaction with CTCF boundaries depend on related mechanisms and raises the possibility that both require transient hinge opening to entrap DNA inside the cohesin ring.


Assuntos
Proteínas de Ciclo Celular , Cromátides , Humanos , Cromátides/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética
17.
Elife ; 122023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650378

RESUMO

The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.


Assuntos
Caenorhabditis elegans , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Animais , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Cromátides , Proteínas Cromossômicas não Histona/genética
18.
Methods Mol Biol ; 2684: 133-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410231

RESUMO

Sister chromatid exchange (SCE) is the process of exchanging regions between two sister chromatids during DNA replication. Exchanges between replicated chromatids and their sisters can be visualized in cells when DNA synthesis in one chromatid is labelled by 5-bromo-2'-deoxyuridine (BrdU). Homologous recombination (HR) is considered as the principal mechanism responsible for the sister chromatid exchange (SCE) upon replication fork collapse, and therefore SCE frequency upon genotoxic conditions reflects the capacity of HR repair to respond to replication stress. During tumorigenesis, inactivating mutations or altered transcriptome can affect a plethora of epigenetic factors that participate in DNA repair processes, and there are an increasing number of reports which demonstrate a link between epigenetic deregulation in cancer and homologous recombination deficiency (HRD). Therefore, the SCE assay can provide valuable information regarding the HR functionality in tumors with epigenetic deficiencies. In this chapter, we provide a method to visualize SCEs. The technique outlined below is characterized by high sensitivity and specificity and has been successfully applied to human bladder cancer cell lines. In this context, this technique could be used to characterize the dynamics of HR repair in tumors with deregulated epigenome.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Troca de Cromátide Irmã/genética , Neoplasias da Bexiga Urinária/genética , Recombinação Homóloga , Cromátides/metabolismo , Bromodesoxiuridina/metabolismo
19.
EMBO Rep ; 24(9): e56463, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37462213

RESUMO

Mitotic chromatin is largely assumed incompatible with transcription due to changes in the transcription machinery and chromosome architecture. However, the mechanisms of mitotic transcriptional inactivation and their interplay with chromosome assembly remain largely unknown. By monitoring ongoing transcription in Drosophila early embryos, we reveal that eviction of nascent mRNAs from mitotic chromatin occurs after substantial chromosome compaction and is not promoted by condensin I. Instead, we show that the timely removal of transcripts from mitotic chromatin is driven by the SNF2 helicase-like protein Lodestar (Lds), identified here as a modulator of sister chromatid cohesion defects. In addition to the eviction of nascent transcripts, we uncover that Lds cooperates with Topoisomerase 2 to ensure efficient sister chromatid resolution and mitotic fidelity. We conclude that the removal of nascent transcripts upon mitotic entry is not a passive consequence of cell cycle progression and/or chromosome compaction but occurs via dedicated mechanisms with functional parallelisms to sister chromatid resolution.


Assuntos
Cromátides , Drosophila , Mitose , Animais , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromatina , DNA Topoisomerases Tipo II/genética , Drosophila/citologia , Drosophila/genética
20.
Nucleic Acids Res ; 51(17): 9101-9121, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37486771

RESUMO

Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner. In addition, we found that Isw1 also interacts with Scc2-Scc4. Lack of Isw1 protein, the Ioc3 subunit of ISW1a or Isw1 chromatin remodeling activity resulted in increased accumulation of cohesin at centromeres and pericentromeres, suggesting that ISW1a may promote efficient translocation of cohesin from the centromeric site of loading to neighboring regions. Consistent with the role of ISW1a in the chromatin organization of centromeric regions, Isw1 was found to be recruited to centromeres. In its absence we observed changes in the nucleosomal landscape at centromeres and pericentromeres. Finally, we discovered that upon loss of RSC functionality, ISW1a activity leads to reduced cohesin binding and cohesion defect. Taken together, our results support the notion of a key role of chromatin remodelers in the regulation of cohesin distribution on chromosomes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...